Examples
- Path of length 3 (\(1\!-\!2\!-\!3\)):
\(1\perp\!\!\perp3\mid2\) iff
\(f(x_1,x_2,x_3) =\psi_{12}(x_1,x_2)\,\psi_{23}(x_2,x_3),\) e.g. \(\psi_{12}=f(x_1,x_2)\), \(\psi_{23}=f(x_3\mid x_2)\). - Path of length 4 (\(1\!-\!2\!-\!3\!-\!4\)):
Global MP gives \(f(x_1,x_2,x_3,x_4) =f(x_4\mid x_3)\,f(x_3\mid x_2)\,f(x_1,x_2) =\psi_{12}\,\psi_{23}\,\psi_{34}.\) Conversely, this factorization implies the global MP. - 4-cycle (\(1\!-\!2\!-\!3\!-\!4\!-\!1\)):
Under the pairwise/global MP assumptions one shows \(f(x_1,x_2,x_3,x_4) =\psi_{12}(x_1,x_2)\,\psi_{23}(x_2,x_3)\,\psi_{34}(x_3,x_4)\,\psi_{14}(x_1,x_4).\)Density Factorization
- Let \(G=(V,E)\) be an undirected graph, and \(\mathcal C\) its set of cliques.
- A density \(f\) w.r.t. \(\lambda=\bigotimes_{v\in V}\lambda_v\) factorizes over \(G\) if there exist nonnegative potentials \(\psi_C:\mathbb R^{|C|}\to[0,\infty)\) such that \(f(x) =\prod_{C\in\mathcal C}\psi_C(x_C) \quad(\lambda\text{-a.e.}\quad x\in\mathbb{R}^V).\)
- Proposition: If \(f\) factorizes over \(G\), then \(P_X\) satisfies the global Markov property w.r.t. \(G\).
Hammersley–Clifford Theorem
- Theorem: If \(f>0\) is a positive density w.r.t. \(\lambda\), then \(\begin{align} &f\text{ factorizes over }G \\ &\Longleftrightarrow \\ &P_X\text{ satisfies the pairwise (equivalently local/global) Markov property w.r.t.\ }G. \end{align}\)
- Proof sketch:
- “\(\Rightarrow\)” follows from Proposition (5.2) and the equivalence of global/local/pairwise MP under positivity.
- “\(\Leftarrow\)” writes \(\log f(x)=\sum_{C\subseteq V}\phi_C(x_C)\) via Möbius inversion on the functions \(H_C(x_C)=\log f(x_C,x_{\bar C}=\bar x)\), then uses pairwise MP to show \(\phi_C=0\) for non-cliques, yielding the desired factorization.
Möbius Inversion
-
Lemma: For any finite set \(V\) and functions \(\psi,\phi:2^V\to\mathbb R\), \(\psi(C)=\sum_{B\subseteq C}\phi(B) \quad\Longleftrightarrow\quad \phi(C)=\sum_{B\subseteq C}(-1)^{|C\setminus B|}\,\psi(B).\)
- Example: Consider \(V=\{1,2\}\) \(\begin{align} \begin{pmatrix} \phi(\emptyset)\\\phi(\{1\})\\\phi(\{2\})\\\phi(\{1,2\})\\ \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 1 & -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} \psi(\emptyset)\\\psi(\{1\})\\\psi(\{2\})\\\psi(\{1,2\}) \end{pmatrix} \end{align}\) Inversion \(\begin{align} \begin{pmatrix} \psi(\emptyset)\\\psi(\{1\})\\\psi(\{2\})\\\psi(\{1,2\}) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \phi(\emptyset)\\\phi(\{1\})\\\phi(\{2\})\\\phi(\{1,2\})\\ \end{pmatrix} \end{align}\)
Counterexamples & Chordality
- Counterexamples on the 4-cycle show distributions can satisfy pairwise MP but fail to factorize (and may or may not be limits of factorizing families).
- Summary of relationships: \(\text{Factorization (F)}\;\implies\;\text{Global MP (G)}\;\implies\;\text{Local MP (L)}\;\implies\;\text{Pairwise MP (P)},\) If the density is positive, the Hammersley-Clifford Theorem yields \(\text{(P)}\implies\text{(F)}\).
- Chordal Graphs: For a chordal (decomposable) graph \(G\), \(f\) factorizes over \(G\) \(\iff\) global MP holds even without assuming positivity. A graph is chordal if every cycle of length \(\ge4\) has a chord.