Undirected Graphs and Graphical Modeling
- Undirected graph \(G=(V,E)\):
• \(V\) a finite vertex set,
• \(E\subseteq\binom V2\) a set of edges. - Adjacency: \(v,w\in V\) are adjacent (\(v\!-\!w\in E\)) denoted \(v\sim_G w\).
- Complete graph: \(E=\binom V2\).
Clique: \(A\subseteq V\) induces a complete subgraph \(G_A\).
Maximal clique: a clique not strictly contained in any larger clique. - Neighborhood:
\(\mathrm{ne}(v)=\{w\in V: v\sim_G w\},\quad \mathrm{ne}(A)=\bigl(\bigcup_{v\in A}\mathrm{ne}(v)\bigr)\setminus A.\) Closure: \(\mathrm{cl}(A)=A\cup\mathrm{ne}(A)\). - Graphical model setup:
- Random vector \(X=(X_v)_{v\in V}\) with joint law \(P_X\).
- For \(A\subseteq V\), \(X_A=(X_v)_{v\in A}\).
- Shorthand for conditional independence:
\(A\indep B\mid C\quad\iff\quad X_A\indep X_B\mid X_C.\)Markov Properties
-
Pairwise Markov property: Two non-adjacent variables are conditionally independent given all other variables \(\forall\,v-w\notin G: \quad v\indep w\mid V\setminus\{v,w\}.\)
- Local Markov property: A node is independent of its non-neighbors given its neighbors \(\forall\,v\in V:\quad v\indep \;V\setminus\mathrm{cl}(v)\;\mid\mathrm{ne}(v).\)
- Global Markov property: Two subsets of variables are conditionally independent given a separating subset. For disjoint \(A,B,C\subseteq V\), if \(C\) separates \(A\) and \(B\) in \(G\) (every path from \(A\) to \(B\) meets \(C\)), then \(A \indep B\mid C\quad\forall A,B,C\subseteq V \text{ disjoint, } A,B\ne\emptyset,\text{ s.t. } C\text{ seperates } A \text{ and }B\)
- Separation: A set \(C\) separates \(A\) and \(B\) if every path in \(G\) from a vertex in \(A\) to one in \(B\)
- Implications:
- Local \(\implies\) Pairwise (via weak union)
- Global \(\implies\) Local (since \(\mathrm{ne}(v)\) separates \(v\) from \(V\setminus\mathrm{cl}(v)\))
Equivalence of Markov Properties
- Intersection property (C5):
If positive density of B, C, D \(f(X_B, X_C, X_D)>0\), then
\(A\indep B\mid C\cup D \text{ and } A\indep C\mid B\cup D\iff A\indep (B\cup C)\mid D\) - Theorem (Lauritzen 1996):
If \((C5)\) holds (e.g. \(P_X\) has a positive density), then the Pairwise, Local and Global Markov properties are equivalent
Failure and Completeness
-
Non-equivalence when (C5) fails:
Binary examples on small graphs satisfy Pairwise but not Local/Global MP. - Completeness of Global MP:
If \(C\) does not separate \(A,B\), there exists a Gaussian \(N(0,K^{-1})\) with
\(K_{vv}=1,\quad K_{v_iv_{i+1}}=\varepsilon\ (i=1,\dots,n-1),\quad K_{vw}=0\ \text{otherwise},\) which obeys Global MP yet not \(A\indep B\mid C\).Further Concepts
-
Independence model:
\(\mathcal I(P_X)=\{(A,B,C):X_A\perp X_B\mid X_C\}\). -
I‐map: Graph \(G\) is an I‐map of \(P_X\) if \(\mathcal I(P_X)\supseteq\mathcal I_{\mathrm{global}}(G)\).
- Perfect map: \(G\) is perfect for \(P_X\) if \(\mathcal I(P_X)=\mathcal I_{\mathrm{global}}(G)\).