• Home
  • About
    • Ziqing Zhao photo

      Ziqing Zhao

      The shortest answer is doing.

    • Learn More
    • Email
    • LinkedIn
    • Github
  • Posts
    • All Posts
    • All Tags
  • Projects

Graphical Models: Markov Properties Undirected Graphs

06 May 2025

Reading time ~2 minutes

Undirected Graphs and Graphical Modeling

  • Undirected graph \(G=(V,E)\):
    • \(V\) a finite vertex set,
    • \(E\subseteq\binom V2\) a set of edges.
  • Adjacency: \(v,w\in V\) are adjacent (\(v\!-\!w\in E\)) denoted \(v\sim_G w\).
  • Complete graph: \(E=\binom V2\).
    Clique: \(A\subseteq V\) induces a complete subgraph \(G_A\).
    Maximal clique: a clique not strictly contained in any larger clique.
  • Neighborhood:
    \(\mathrm{ne}(v)=\{w\in V: v\sim_G w\},\quad \mathrm{ne}(A)=\bigl(\bigcup_{v\in A}\mathrm{ne}(v)\bigr)\setminus A.\) Closure: \(\mathrm{cl}(A)=A\cup\mathrm{ne}(A)\).
  • Graphical model setup:
    • Random vector \(X=(X_v)_{v\in V}\) with joint law \(P_X\).
    • For \(A\subseteq V\), \(X_A=(X_v)_{v\in A}\).
    • Shorthand for conditional independence:
      \(A\indep B\mid C\quad\iff\quad X_A\indep X_B\mid X_C.\)

      Markov Properties

  1. Pairwise Markov property: Two non-adjacent variables are conditionally independent given all other variables \(\forall\,v-w\notin G: \quad v\indep w\mid V\setminus\{v,w\}.\)

  2. Local Markov property: A node is independent of its non-neighbors given its neighbors \(\forall\,v\in V:\quad v\indep \;V\setminus\mathrm{cl}(v)\;\mid\mathrm{ne}(v).\)
  3. Global Markov property: Two subsets of variables are conditionally independent given a separating subset. For disjoint \(A,B,C\subseteq V\), if \(C\) separates \(A\) and \(B\) in \(G\) (every path from \(A\) to \(B\) meets \(C\)), then \(A \indep B\mid C\quad\forall A,B,C\subseteq V \text{ disjoint, } A,B\ne\emptyset,\text{ s.t. } C\text{ seperates } A \text{ and }B\)
    • Separation: A set \(C\) separates \(A\) and \(B\) if every path in \(G\) from a vertex in \(A\) to one in \(B\)
    • Implications:
      • Local \(\implies\) Pairwise (via weak union)
      • Global \(\implies\) Local (since \(\mathrm{ne}(v)\) separates \(v\) from \(V\setminus\mathrm{cl}(v)\))

Equivalence of Markov Properties

  • Intersection property (C5):
    If positive density of B, C, D \(f(X_B, X_C, X_D)>0\), then
    \(A\indep B\mid C\cup D \text{ and } A\indep C\mid B\cup D\iff A\indep (B\cup C)\mid D\)
  • Theorem (Lauritzen 1996):
    If \((C5)\) holds (e.g. \(P_X\) has a positive density), then the Pairwise, Local and Global Markov properties are equivalent

Failure and Completeness

  • Non-equivalence when (C5) fails:
    Binary examples on small graphs satisfy Pairwise but not Local/Global MP.

  • Completeness of Global MP:
    If \(C\) does not separate \(A,B\), there exists a Gaussian \(N(0,K^{-1})\) with
    \(K_{vv}=1,\quad K_{v_iv_{i+1}}=\varepsilon\ (i=1,\dots,n-1),\quad K_{vw}=0\ \text{otherwise},\) which obeys Global MP yet not \(A\indep B\mid C\).

    Further Concepts

  • Independence model:
    \(\mathcal I(P_X)=\{(A,B,C):X_A\perp X_B\mid X_C\}\).

  • I‐map: Graph \(G\) is an I‐map of \(P_X\) if \(\mathcal I(P_X)\supseteq\mathcal I_{\mathrm{global}}(G)\).

  • Perfect map: \(G\) is perfect for \(P_X\) if \(\mathcal I(P_X)=\mathcal I_{\mathrm{global}}(G)\).


Graphical ModelsProbabilistic InferenceMarkov Properties Undirected Graphs Share Tweet +1